

100-P01 COORDINATION OF PROJECTS: Other projects in the vicinity of this project are under contract during the 2023-2026 construction season:

Upcoming project on US 281 at N TWP LINE N ELLENDALE TO EDGELEY
Project 22614 is located on ND 200 at 2 NORTH OF ND 200A
Project 2614 is located on ND 200 at 2 NORTH OF ND 200A
Project 20049 is located on ND 1806 at JCT 23 N TO CHARLSON
Project 23583 is located on ND 18 at E JCT 200 W THRU PORTLAND
This list is not comprehensive and other projects may exist.
704-200 STATE FURNISHED MEDIAN BARRIERS: Obtain (96) $22.5^{\prime \prime} \times 12.5^{\prime}$ concrete barriers. They can be picked up and returned to the Sterling yard. Contact the Bismarck District office at 701-328-6950 to facilitate the exchanges.

Section 704.04 J "Precast Concrete Median Barrier (State Furnished)" applies to the contract item "State Furnished Median Barrier".

If returning barriers with connection components, coordinate the delivery location for the connecting components with the Engineer. Some 4 inch $\times 4$ inch boards are available at the return location. Provide any additional 4 inch $x 4$ inch boards necessary to stack barriers. The boards will become property of the Department.

Payment for the State Furnished Median Barrier will follow Section 704.06 D "Precast Concrete Median Barrier (State Furnished)". Include all costs associated with median barriers in the contract unit price for "State Furnished Median Barrier".

704-500 PORTABLE RUMBLE STRIPS (PRS): Use PRS made of rubber or engineered polymers. Install PRS as part of the temporary traffic control when the following signs are also part of the required of the required traffic control set up:
"Be Prepared to Stop" (W3-4)
"Flagger" symbol (W20-7)
Install PRS that meet the following criteria:
Have no adhesive or fasteners required for placement;
Have a manufacturer's speed rating that meets or exceeds the posted speed limit; and each strip in the array must weigh a minimum of 100 pounds.

Use individual PRS constructed in one of the following manners:
A single piece;
Interlocking segments; or
Two pieces hinged at the midpoint.
An installed array of PRS consists of a minimum of 3 individual strips

Move rumble strips with the flagging operation. Do not place rumble strips on horizontal curves.

The Engineer will count and measure each array as one unit. Include the cost of providing, installing, maintaining, and relocating PRS in the unit price bid for "Portable Rumble Strips".

704-P01 TRAFFIC CONTROL FOR BOX CULVERTS: Provide traffic control consisting of a single lane closure with flagging for two box culvert locations, and a double lane shift for five box culvert locations.

Traffic control device quantities are based on two simultaneous double lane shifts and one single lane closure, assuming a work space length of 100 feet. The Department will pay for additional devices if more locations are repaired concurrently.

See Single Lane Closure for:
Structure 13-192.154
Structure 200-163.162
For Structure 13-192.154, Phase 1 is for active construction and Phase 2 is to be provided during curing and before backfill of wingwall when active construction and flagging operations are not underway.

See Double Lane Shift for:
Structure 23-033.279
Structure 200-388.375
Structure 200-389.780
Structure 281-016.454
Structure 281-027.547
Lane widths are to remain 12 feet minimum. Taper width " W " will be a minimum of 4 feet and field adjusted to provide a minimum work zone width of 12 feet. the Federal Highway Administration have made environmental commitments to secure approval of this project. The following environmental notes are requirements to comply with these commitments:

EN-1 SPAWNING RESTRICTION: Do not work within the Sand Creek, Raymond Creek, Goose River, or Maple River from April 15 to June 1.

EN-2 AQUATIC NUISANCE SPECIES (ANS): Equipment that was last used outside of North Dakota or within a Class I infested waterbody (identified on the North Dakota Game and Fish Department (NDGFD) website) requires an inspection by NDGFD. Notify the NDGFD at least 10 business days prior to pumps, watercraft, or any equipment entering a public water to allow the NDGFD sufficient time to inspect any and all such equipment for ANS. Contact the NDGFD ANS Coordinator, Ben Holen by e-mail - bholen@nd.gov for equipment inspections. Supply one of the following to the engineer as proof of compliance prior to work taking place in the water: (1) the NDGFD inspection report, (2) documented NDGFD correspondence (email or signed letter).

EN-3 THREATENED AND ENDANGERED SPECIES: The project is located near/within suitable habitat for the species listed in the following table.

SPECIES	HABITAT	PRESENCE
Northern Long-Eared Bat	Forested/Wooded Areas/Bridges/Box Culvert/Caves/Mines	Active Season: April 1 - October 31* Inactive Season: November 1-March 31^{*}

If any of the above threatened and endangered species are identified within 1 mile of the project, the Contractor will notify the Engineer immediately and cease construction activities in the vicinity until an avoidance area is established. The Engineer will establish an avoidance area that is at least a 0.5 mile and immediately coordinate with the USFWS (701-355-8513), FHWA (701-221-9464), and NDDOT Environmental and Transportation Service (701-328-2592). The Contractor will not resume work within the avoidance area until the Engineer has confirmed with the agencies that work may proceed (either the species have eft the area, or approved avoidance/minimization measures have been implemented)

	STATE	PROJECT No.	SECTION	SHEET No.
	ND	$\mathrm{NH}-9-999(477)$	8	1


```
Notes:
S=Numerical value of speed limit or 85th percentile
\mathrm{ 2. Place barricades on moveabie assembies and signs on portable assembs when localed in the roadway,}
3. Space tubura markerr for tangents at 2 times dimension "S"fild, dependent on the location and condition
\al
\
Tubular markers च Sign
Delineator drum }\longleftarrow\mathrm{ Portable concrete barrier
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{KEY} \\
\hline \(\checkmark\) Flagger & ص & Type III barricade \\
\hline - Tubular markers & \(\exists\) & Sign \\
\hline - Delineator drum & \(\square\) & Portable concrete barrier \\
\hline
\end{tabular}
```

State	Project no.	${ }_{\substack{\text { section } \\ \text { No. }}}^{\text {a }}$	
ND	NH-9-999(477)	100	3

100 SCOPE OF WORK: Work at this site consists of repairing the spalled concrete on the southwest headwall, repairing joints at this triple 12×14 concrete box culvert, and replacing a section of the northeast wingwall

100 GENERAL: Include the cost of furnishing and placing concrete inserts, rebar couplers, silicone sealant, and other miscellaneous items in the price bid for "Class AE-3 Concrete".

202 REMOVAL OF CONCRETE: Remove existing northeast wingwall 2 ft back from the crack. Cut wing footing to the limits shown. Use a 1 " saw cut at 2 ft back from crack and jackhammer remaining concrete with a 15-pound hammer to prevent damage to existing reinforcement for rebar splicing and/or mechanical coupling in lieu of proposed dowels. Any additional cost for this option must be borne by the contractor. Include all materials excavation, labor and equipment required for this work in the price bid for "Removal of Concrete"

602 CONCRETE: Cast the following elements of each section in one continuous run: 1. Wing footings
2. Wing complete to the top

If the existing wall thickness is different than the new thickness, set the inner surfaces flush and the exterior surfaces tapered in the first 1'-6" of the wing.

602 CURING CONCRETE: Wet cure all concrete surfaces not covered by forms. Cover the concrete with a double thickness of burlap. Maintain surface moisture between the final finish and placement of burlap by periodic applications of a light fog spray of water. Keep the burlap continuously moist until the end of the curing period.

602 POST INSTALLED ANCHORAGES: Concrete anchorages for the wingwall will require drilling and anchoring to existing concrete using a chemical adhesive. Provide an adhesive with a minimum characteristic bond strength in uncracked concrete of 1.5 ksi Drill holes $1 / 8$ " larger in diameter than anchorage bar or per manufacturer's recommendations and to the depths shown in the details. The Contractor will verify that no reinforcement will be encountered while drilling and any modifications to anchorage spacing will be approved by the Engineer prior to drilling

Submit to the Engineer one system, including installation instructions, for approval prio to beginning work. Install all anchors as specified by the Manufacturer's Printed Installation Instructions. Adhesive anchorage installers must hold current ACI-CRSI Adhesive Anchor Installer Certification credentials. Prior to installation of the anchorages on the project, meet with the Project Engineer, Inspectors, and Installers to review the installation process and requirements. At the Pre-installation meeting, submit a record of the contractor/installer ACI-CRSI certification card to the Project Engineer.

Meet the following conditions prior to installing

- Ensure concrete surface is free of water prior to drilling
- Ensure the hole is dry
- Install anchorages per Manufacturer's Printed Installation Instructions

Include the price for installation and testing of anchorage of individual bars in the bid items "Reinforcing Steel-Grade 60". At the contractor's option, if rebar splicing and/or mechanical coupling per section 202, existing rebar in cutback from crack can be cleaned and spliced with required splice length or mechanically coupled in lieu of postinstalled anchorage. Any additional cost for this option must be borne by the contractor

930 SHORING: Temporary shoring is required for the excavation and replacement of the wingwall. The Contractor will design, construct, maintain, and remove the temporary shoring. All excavation, labor, equipment, and material needed for this work shall be included in the bid item, "Shoring".

930 SPALL REPAIR: The bid item "Spall Repair" is for the saw cutting, removal, and replacement of the unsound concrete on the southwest headwall of the original box culvert. Restore the spalled areas to their original cross section.

Use a 15-pound maximum size chipping hammer on any unsound concrete removal. Provide sharp, neat lines at least 1 inch deep at the edges of the repair areas. Within the removal area, remove concrete to provide a minimum 1" clearance around the periphery of the reinforcing steel. Produce these sharp, neat lines by saw cutting or other means approved by the Engineer. Take care in the removal process to ensure no damage is done to the reinforcing steel

Sand blast clean the existing concrete and exposed reinforcing steel. Clean the existing concrete surface by high pressure water blasting. After the surface has dried and just before the patching material is placed, coat the surface with an epoxy bonding agent that includes a migratory corrosion inhibitor. The bonding agent and corrosion inhibitor may be Sika FerroGard 903 (Sika Corp.), Tamms Duralprep A.C., Pro-Poxy 204 (Unitex) or an approved equal.

Use a two component, polymer-modified, cementitious repair mortar material that is specifically intended for patching concrete and contains a corrosion inhibitor. This patching material may be SikaTop 123 Plus (Sika Corporation), Duraltop Gel (Euclid Chemical Company), MasterEmaco N 400 (BASF Corporation), or an approved equal repair mortar. Cure the material as recommended by the manufacturer.

At the contractor's option, and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform spall repairs using shotcrete in lieu of cementitious repair mortar. Any additional cost for this option must be borne by the contractor.

The actual limits of spall repair are to be determined by the Engineer in the field. Include the cost of all labor, equipment, and materials needed for spall repair in the price bid for "Spall Repair".

STATE	PROJECT No.	SECTION NO.	SHEET N.
ND	NH-9-999(477)	170	3

930 BOX CULVERT JOINT REPAIR: The north construction joint has separated approximately 3 " and the south construction joint has separated approximately $1^{\prime \prime}$

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair"

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387 Mix concrete according to manufacturer's instructions. Wet cure concrete a minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the floor using shotcrete in lieu of concrete.

Fill the box culvert joints on the walls and the ceilings with expansive foam insulation Cut expansive foam flush with the interior of the box culvert after it has dried. Install mechanical anchors in sound concrete to supply supplemental bond strength for shotcrete, then cover expansive foam and mechanical anchors with 2" layer of shotcrete Refer to SP 192(23) for additional information.

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements:

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in a box culvert. At this site, a total of 16 joint segments will be paid for at the construction joint: 4 exterior walls, 6 floor segments, and 6 roof segments.

Include the cost of all equipment, labor, and materials required for the joint repair work a each segment in the price bid for "Box Culvert Joint Repair".

[^0]

Docusign Envelope ID: 60184520-7B64-486C-8B82-92FED83F5DE8

100 SCOPE OF WORK: Work at this site consists of repairing the abrasions on the lower 3 feet of the barrel walls and repairing the joints at this single 9×9 concrete box culvert.

930 SPALL REPAIR: The bid item "Spall Repair" is for the saw cutting, removal, and replacement of the unsound concrete on a section of the lower walls of the barrel of the original box culvert. Restore the spalled areas to their original cross section.

Use a 15-pound maximum size chipping hammer on any unsound concrete removal Provide sharp, neat lines at least 1 inch deep at the edges of the repair areas Within the removal area, remove concrete to provide a minimum 1" clearance around the periphery of the reinforcing steel. Produce these sharp, neat lines by saw cutting or other means approved by the Engineer. Take care in the removal process to ensure no damage is done to the reinforcing steel.

Sand blast clean the existing concrete and exposed reinforcing steel. Clean the existing concrete surface by high pressure water blasting. After the surface has dried and just before the patching material is placed, coat the surface with an epoxy bonding agent that includes a migratory corrosion inhibitor. The bonding agent and corrosion inhibitor may be Sika FerroGard 903 (Sika Corp.), Tamms Duralprep A.C. Pro-Poxy 204 (Unitex) or an approved equal.

Use a two component, polymer-modified, cementitious repair mortar material that is specifically intended for patching concrete and contains a corrosion inhibitor. This patching material may be SikaTop 123 Plus (Sika Corporation), Duraltop Gel (Euclid Chemical Company), MasterEmaco N 400 (BASF Corporation), or an approved equal repair mortar. Cure the material as recommended by the manufacturer.

At the contractor's option, and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform spall repairs using shotcrete in lieu of cementitious repair mortar. Any additional cost for this option must be borne by the contractor.

The actual limits of spall repair are to be determined by the Engineer in the field. Include the cost of all labor, equipment, and materials needed for spall repair and removing and reinstalling brace in the price bid for "Spall Repair".

930 BOX CULVERT JOINT REPAIR: The north construction joint has separated approximately $2.5^{\prime \prime}$. Voids measured from the inside of the box culvert measured up to 2.5 deep above the ceiling.

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair"

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387 Mix concrete according to manufacturer's instructions. Wet cure concrete a minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the
floor using shotcrete in lieu of concrete.
Fill voids above the roof with expansive foam insulation. Cut expansive foam flush with the interior of the box culvert after it has dried. Install mechanical anchors in sound concrete to supply supplemental bond strength for shotcrete, then cover expansive foam and mechanical anchors with 2" layer of shotcrete. Refer to SP 192(23) for additional information

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in a box culvert. At this site, a total of 2 joint segments will be paid for at the construction joint: 1 floor segment and 1 roof segment
nclude the cost of all equipment, labor, and materials required for the joint repair work at each segment in the price bid for "Box Culvert Joint Repair"

950 JOINT TREATMENT: The reinforced concrete box culvert has severe splits at both extension joints. The Engineer will sound and mark out areas of unsound concrete prior to removal

Remove all unsound concrete and replace it with new concrete material. Use a 15-pound maximum size chipping hammer on any unsound concrete. Provide sharp, neat lines at least 1 inch deep at the edges of the repair areas. Produce these sharp, neat lines by saw cutting or other means approved by the Engineer. Remove concrete to a depth that provides a minimum clearance of 1 around the periphery of the rebar. Take care not to damage existing reinforcement.

Sand blast clean any rust scale found on the exposed reinforcing steel. Clean the existing concrete surface by light sand blasting. After the surface has dried just before the patching material is placed, coat the surface with an epoxy bonding agent

Use shotcrete in accordance with SP 192(23) Concrete Spall Repair by Shotcrete. Apply and cure the material as recommended by the manufacturer.

The plan quantity is based on the assumption that the areas to be repaired are to the dimensions shown in plan view. The actual limits of the repair are to be determined by the Engineer in the field

Include all labor, equipment, and materials needed to repair the spall areas in the bid item "Joint Treatment"

100 SCOPE OF WORK: Work at this site consists of repairing the joints at this triple 10×12 concrete box culvert.

930 BOX CULVERT JOINT REPAIR: The east construction joint near mid length has separated approximately $1.5^{\prime \prime}$ and the west construction joint near mid length has separated approximately $2.0^{\prime \prime}$. There is a loss of fill behind the east and west joints.

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair".

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387. Mix concrete according to manufacturer's instructions. Wet cure concrete a minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the floor using shotcrete in lieu of concrete.

Fill void behind the wall with expansive foam insulation. Cut expansive foam flush with the exterior of the box culvert after it has dried to allow space for the joint treatment. Afte joint treatment, use tie rods anchored to the wall at each exterior wall joint to tie joints in the box culvert as shown in the detail past the limits of the Joint Treatment repair. Postinstall the bolt sleeves using Hilti HIT-HY adhesive or approved equivalent according to manufacturer's instructions.

Fill the voids on the ceilings with expansive foam insulation. Cut expansive foam flush with the exterior of the box culvert after it has dried.

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements:

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in a box culvert. At this site, a total of 16 joint segments will be paid for at the construction joint: 4 exterior walls, 6 roof segments, and 6 floor segments.

Include the cost of all equipment, labor, and materials required for the joint repair work at each segment in the price bid for "Box Culvert Joint Repair".

950 JOINT TREATMENT: The reinforced concrete box culvert has severe splits and porou deteriorated concrete at all expansion joints. The Engineer will sound and mark out areas of unsound concrete prior to removal.

Remove unsound concrete and replace it with new concrete material. If unsound
concrete extends past 1" periphery around rebar, notify the Engineer before further removal. Use a 15 -pound maximum size chipping hammer on any unsound concrete Expose existing reinforcement, without damage, and lap with proposed identical einforcement. New reinforcement should be matched to existing and be verified by the Engineer in the field. Provide sharp, neat lines. Remove concrete to a depth that provides a minimum clearance of 1 " around the periphery of the rebar. Take care not to damage existing reinforcement.

Sand blast clean any rust scale found on the exposed reinforcing steel. Clean the existing concrete surface by light sand blasting. After the surface has dried just before the patching material is placed, coat the surface with an epoxy bonding agent

Use shotcrete in accordance with SP 192(23) Concrete Spall Repair by Shotcrete. Apply and cure the material as recommended by the manufacturer.

The plan quantity is based on the assumption that the lengths to be repaired are to the dimensions shown in plan view and joint treatment width is estimated as 6 ft . The actual limits of the repair are to be determined by the Engineer in the field.
nclude all labor, equipment, and materials needed to repair the spall areas in the bid tem "Joint Treatment".

100 SCOPE OF WORK: Work at this site consists of repairing various construction joints filling topsoil erosion holes and addressing scour on the north end of this triple 11×10 concrete box culvert

203 TOPSOIL: Fill erosion hole at the east of structure along the north bank with topsoil, seed with wetland seed mix meeting 251.03.F, and cover with Erosion Control Blanke meeting 255.03. Include all materials, labor and equipment required for this work in the price bid for "Topsoil".

210 FOUNDATION FILL: Engineer will verify dimensions of scour hole prior to commencement of work. Use clay fill to fill the bottom of the scour hole as shown in Scour Repair Detail. Use clay fill that meets AASHTO Silt-Clay Materials Classification See Riprap Grade II for filling the top of the scour hole. Include all materials, excavation labor, and equipment for this work in the price bid for "Foundation Fill".

256 RIPRAP GRADE II: Fill the top 2' of the scour hole with Riprap Grade II. Before placing the riprap and after placing the foundation fill, place Geosynthetic Material Type RR. Include all materials, excavation, labor, and equipment required for this work in the price bid for "Riprap Grade II".

930 BOX CULVERT JOINT REPAIR: In the west culvert barrel, the north center joint has separated approximately 1.25 " and the north joint has separated approximately 5 ". Voids in the west culvert barrel at the north joint measured up to 4' deep with misalignment up to $3 / 4$ ". In the center culvert barrel, the south joint has separated between $7 / 8^{\prime \prime}$ and $1.5^{\prime \prime}$, the north center joint has separated 1.25 ", and the north joint has separated between 2.5 " and 4 " with misalignment up to $7 / 8$ ". In the east culvert barrel the north joint has separated approximately $1.25^{\prime \prime}$, the north center joint has separated approximately $1.25^{\prime \prime}$, and the south joint has separated approximately 1.75 " with misalignment up to $3 / 4$ ".

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair".

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387 Mix concrete according to manufacturer's instructions. Wet cure concrete a minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the floor using shotcrete in lieu of concrete.

Fill the voids along the walls and the ceilings with expansive foam insulation. Cut expansive foam flush with the interior of the box culvert after it has dried. Install mechanical anchors in sound concrete to supply supplemental bond strength for shotcrete, then cover expansive foam and mechanical anchors with 2" layer of shotcrete. Refer to SP 192(23) for additional information. Use tie rods anchored to the wall at each exterior wall joint to tie joints in the box culvert as shown in the detail. Post-install the bol sleeves using Hilti HIT-HY adhesive or approved equivalent according to manufacturer's instructions

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in box culvert. At this site, a total of 24 joint segments will be paid for at the construction joint: 6 exterior walls, 9 floor segments, and 9 roof segments.

Include the cost of all equipment, labor, and materials required for the joint repair work at each segment in the price bid for "Box Culvert Joint Repair"

[^1]100 SCOPE OF WORK: Work at this site consists of repairing the north and south joints, the spall, and scour at this triple 9×8 concrete box culvert.

203 TOPSOIL: Fill erosion hole at the west of structure along the north bank with topsoil, seed with Class II seed mix meeting 251.03.D, and cover with Erosion Control Blanket meeting 255.03. Include all materials, labor and equipment required for this work in the price bid for "Topsoil".

210 FOUNDATION FILL: Engineer will verify dimensions of scour hole prior to commencement of work. Use clay fill to fill the bottom of the scour hole as shown in Scour Repair Detail. Use clay fill that meets AASHTO Silt-Clay Materials Classification. See Riprap Grade II for filling the top of the scour hole. Include all materials, excavation, labor, and equipment for this work in the price bid for "Foundation Fill".

256 RIPRAP GRADE II: Fill the top 2' of the scour hole with Riprap Grade II. Before placing the riprap and after placing the foundation fill, place Geosynthetic Material Type RR. Include all materials, excavation, labor, and equipment required for this work in the price bid for "Riprap Grade II".

930 SPALL REPAIR: The bid item "Spall Repair" is for the saw cutting, removal, and replacement of the unsound concrete on the ceiling. Restore the spalled areas to their original cross section

Use a 15-pound maximum size chipping hammer on any unsound concrete removal. Provide sharp, neat lines at least 1 inch deep at the edges of the repair areas. Within the removal area, remove concrete to provide a minimum 1" clearance around the periphery of the reinforcing steel. Produce these sharp, neat lines by saw cutting or other means approved by the Engineer. Take care in the removal process to ensure no damage is done to the reinforcing steel.

Sand blast clean the existing concrete and exposed reinforcing steel. Clean the existing concrete surface by high pressure water blasting. After the surface has dried and just before the patching material is placed, coat the surface with an epoxy bonding agent that includes a migratory corrosion inhibitor. The bonding agent and corrosion inhibitor may be Sika FerroGard 903 (Sika Corp.), Tamms Duralprep A.C. Pro-Poxy 204 (Unitex) or an approved equal.

Use a two component, polymer-modified, cementitious repair mortar material that is specifically intended for patching concrete and contains a corrosion inhibitor. This patching material may be SikaTop 123 Plus (Sika Corporation), Duraltop Gel (Euclid Chemical Company), MasterEmaco N 400 (BASF Corporation), or an approved equal repair mortar. Cure the material as recommended by the manufacturer

At the contractor's option, and in accordance with North Dakota Department of Transportation SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform spall repairs using shotcrete in lieu of cementitious repair mortar. Any additional cost for this option must be borne by the contractor.

The actual limits of spall repair are to be determined by the Engineer in the field. Include the cost of all labor, equipment, and materials needed for spall repair in the price bid for "Spall Repair".

930 BOX CULVERT JOINT REPAIR: In the west culvert barrel, the south joint has separated between 6" and 4.75" approximately and the north joint has separated between 4.5 " and 3.75 " approximately. In the east culvert barrel the south joint has separated between 5 " and 4" approximately and the north joint has separated between 4.75" and 4" approximately.

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair".

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387. Mix concrete according to manufacturer's instructions. Wet cure concrete a minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the floor using shotcrete in lieu of concrete.

Fill voids along the walls and the ceilings with expansive foam insulation. Cut expansive foam flush with the interior of the box culvert after it has dried. Install mechanical anchors in sound concrete to supply supplemental bond strength for shotcrete, then cover expansive foam and mechanical anchors with 2" layer of shotcrete. Refer to SP 192(23) for additional information. Use tie rods anchored to the wall at each exterior wall joint to ie joints in the box culvert as shown in the detail. Post-install the bolt sleeves using Hilt HIT-HY adhesive or approved equivalent according to manufacturer's instructions.

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in box culvert. At this site, a total of 20 joint segments will be paid for at the
construction joint: 4 exterior walls, 4 interior walls, 6 floor segments, and 6 roof segments.
nclude the cost of all equipment, labor, and materials required for the joint repair work at each segment in the price bid for "Box Culvert Joint Repair".

NOTES

100 SCOPE OF WORK: Work at this site consists of repairing joints, removing and replacing the southeast wingwall and repairing scour at this triple 10×12 concrete box culvert

202 REMOVAL OF CONCRETE: Remove existing southeast wingwall in its entirety Cut wing footing, apron, culvert floor and wall to the limits shown, leaving the existing culvert and apron reinforcing. Leave the barrel roof in place. Shore the existing culvert during the partial remove and replacement. Include all materials, excavation, labor and equipment required for this work in the price bid for "Removal of Concrete".

210 FOUNDATION FILL: Engineer will verify dimensions of scour hole prior to commencement of work. Use clay fill to fill the bottom of the scour hole as shown in Scour Repair Detail. Use clay fill that meets AASHTO Silt-Clay Materials Classification See Riprap Grade II for filling the top of the scour hole. Provide foundation fill below wingwall in accordance with Section 210.B.3. Include all materials, excavation, labor, and equipment for this work in the price bid for "Foundation Fill"

256 RIPRAP GRADE II: Fill the top 2' of the scour hole with Riprap Grade II. Before placing the riprap and after placing the foundation fill, place Geosynthetic Material Type RR. Include all materials, excavation, labor, and equipment required for this work in the price bid for "Riprap Grade II".

602 CONCRETE: Cast the following elements of each section in one continuous run 1. Wing footings, culvert floor, and apron.
2. Wing complete to the top and culvert wall.

If the existing wall thickness is different than the new thickness, set the inner surfaces flush and the exterior surfaces tapered in the first $1^{\prime}-6$ " of the wing

602 CURING CONCRETE: Wet cure all concrete surfaces not covered by forms. Cover the concrete with a double thickness of burlap. Maintain surface moisture between the final finish and placement of burlap by periodic applications of a light fog spray of water. Keep the burlap continuously moist until the end of the curing period.

612 REINFORCING STEEL: Dimensions of bent bars are given out to out
930 SHORING: Temporary shoring is required for the excavation and replacement of the wingwall. The Concractor will design, construct, maintain, and remove the temporary shoring. All excavation, labor, equipment, and material needed for this work shall be included in the bid item, "Shoring".

930 BOX CULVERT JOINT REPAIR: In the south culvert barrel the center joint has separated 1".

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair".

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387 Mix concrete according to manufacturer's instructions. Wet cure concrete a

23 U.S.C. 407 NDDOT Reserves All Objections
STATE \quad PROJECTNO.
minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the floor using shotcrete in lieu of concrete.

Fill the box culvert joints on the walls and the ceilings with expansive foam insulation Cut expansive foam flush with the interior of the box culvert after it has dried.

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in a box culvert. At this site, a total of 3 joint segments will be paid for at the construction joint: 1 exterior wall, 1 floor segment, and 1 roof segments
nclude the cost of all equipment, labor, and materials required for the joint repair work at each segment in the price bid for "Box Culvert Joint Repair"

DocuSign Envelope ID: 60184520-7B64-486C-8B82-92FED83F5DE8

100 SCOPE OF WORK: Work at this site consists of repairing the east and west joints scour, and addressing the topsoil at this single 10×10 concrete box culvert.

203 TOPSOIL F Fill erosion hole behind the southeast wing with topsoil, seed with wetland seed mix meeting 251.03.F, and cover with Erosion Control Blanket meeting 255.03 include all materials, labor and equipment required for this work in the price bid for "Topsoil".

210 FOUNDATION FILL: Place foundation fill for conditions described in "Riprap Grade II" note. Quantities are based on section A-A which shows a potential restoration layout for assumed conditions called out in the detail. Use clay fill that meets AASHTO Silt-Clay Materials Classification. Include all materials, labor, and equipment for the placement of foundation fill in the price bid for "Foundation Fill".

256 RIPRAP GRADE II: The Engineer will verify the existing field conditions and dimensions of the scour hole and the original plunge pool prior to the commencement of work

If the scour hole needs to be dewatered, include the price in the amount bid for "Riprap Grade II".

Restore the plunge pool within the R/W to the original condition shown in Original Plunge Pool Section A-A. In areas where no riprap exists, install foundation fill below the proposed riprap line and place Geosynthetic Material Type RR prior to the placement of proposed riprap. In areas where riprap exists, install proposed riprap directly on top of existing to meet proposed conditions

Restore the 25 ' adjacent to the existing box culvert to the original condition. The Engineer will adjust the remaining dimensions as necessary to tie into existing conditions. Maintain a 10 buffer from existing R/W. Quantities are based on Scour Repair Section A-A which shows a potential restoration layout for assumed conditions called out in the detail.

Foundation Fill shall be paid for under price bid for "Foundation Fill". Include all other materials, excavation, labor, and equipment required for this work in the price bid for "Riprap Grade II".

930 BOX CULVERT JOINT REPAIR: The west joint has separated approximately $11 / 2^{\prime \prime}$ and the east joint has separated approximately 1 1/8".

If the box culvert needs to be dewatered, include the price in the amount bid for "Box Culvert Joint Repair".

Fill the voids along the box culvert floor with concrete. Provide AE-3 Concrete in accordance with Section 602 or a commercially packaged mix meeting ASTM C387 Mix concrete according to manufacturer's instructions. Wet cure concrete a minimum of 5 days. At the contractor's option and in accordance with SP 192(23) Concrete Spall Repair by Shotcrete, the contractor may perform joint repair along the floor using shotcrete in lieu of concrete.

Fill the box culvert joints on the walls and the ceilings with expansive foam insulation. Cut expansive foam flush with the interior of the box culvert after it has dried.

Expansive foam insulation must consist of a high expansion hydrophobic polyurethane foam that is nontoxic, nonflammable, and meets the following requirements

Test	Requirement	Method
Tensile Strength	50 psi	ASTM D 638
Compressive Strength	90 psi	ASTM D 1621
Shear Strength	25 psi	ASTM D 732
Water Absorption	$<2 \%$ by volume	ASTM D 2842

The bid item "Box Culvert Joint Repair" applies to all different types of joint segments in a box culvert. At this site, a total of 8 joint segments will be paid for at the construction joint: 4 exterior walls, 2 floor segments, and 2 roof segments

Include the cost of all equipment, labor, and materials required for the joint repair work at each segment in the price bid for "Box Culvert Joint Repair".

(3)	This is a special text character used in the labeling of existing features. It indicates a feature that has an unknown characteristic, potentially based on: lack of description, location accuracy or purpose	C Gdrl	cable guardrail	Culv	culvert	FOS		tor of safety	
		Calc	calculate	C\&G	curb \& gutter	Fed		deral	
		CIP	cast iron pipe	Cl	curb inlet	FP		d point	
		CB	catch basin	CR	curb ramp	Fn			
Abn	abandoned	CRS	cationic rapid setting	C	cut	Fn P		ce post	
Abut	abutment	C Gd	cattle guard			FO		er optic	
Adj	adjusted	C To C	center to center	Dd Ld	dead load	FD		d drive	
Aggr	aggregate	CL or ${ }^{\text {¢ }}$	centerline	Defi	deflection	F	fill		
Ahd	ahead	Ch	chain	Defm	deformed	FAA		e aggregate angul	
ARV	air release valve	Chnlk	chain-link	Dint	delineate	FH		hydrant	
Align	alignment	Ch Blk	channel block	Dintr	delineator	FI		nge	
Al	alley	ChCh	channel change	Depr	depression	Flrd	flar		
Alt	alternate	Chk	check	Desc	description	FES		red end section	
Alum	aluminum	Chsld	chiseled	Det	detail	F Bcn		shing beacon	
ADA	Americans with Disabilities Act	Cir	circle	DWP	detectable warning panel	FA		ht auger sample	
\&	and	Cl	class	Dtr	detour	FL		w line	
Appr	approach	CInt	clean-out	Dia or \varnothing	diameter	Ftg		ting	
Approx	approximate	Clr	clear	Dir	direction	FM		ce main	
ACP	asbestos cement pipe	Clagr	clearing \& grubbing	Dist	distance	Fnd	fou		
Asph	asphalt	Comb.	combination	DM	disturbed material	Fdn		undation	
AC	asphalt cement	Coml	commercial	DB	ditch block	Frac		ctional	
Assmd	assumed	Compr	compression	DG	ditch grade	Frwy		eway	
@	at	CADD	computer aided drafting \& design	D	double	Frt	fron		
Atten	attenuation	Conc	concrete	Dn	down	FF		nt face	
ATR	automatic traffic recorder	CECB	concrete erosion control blanket	Dwg	drawing	F Disp		ldispenser	
Ave	Avenue	Cond	conductor	Dr	drive	FFP		l filler pipes	
Avg	average	Const	construction	Drwy	driveway	FLS		l leak sensor	
ADT	average daily traffic	Cont	continuous	DI	drop inlet	Furn		nish/ed	
		CSB	continuous split barrel sample	D	dry density				
		Contr	contraction						
		Contr	contractor						
Bk	back	CP	control point						
BF	back face	Coord	coordinate	Ea	each				
Balc	balcony	Cor	corner	Esmt	easement				
B Wire	barbed wire	Corr	corrected	E	East				
Barr	barricade	CAES	corrugated aluminum end section	EB	Eastbound				
Btry	battery	CAP	corrugated aluminum pipe	Elast	elastomeric				
BI	beehive inlet	CMES	corrugated metal end section	EL	electric locker				
Beg	begin	CMP	corrugated metal pipe	E Mtr	electric meter				
BG	below grade	CPVCP	corrugated poly-vinyl chloride pipe	Elec	electric/al				
BM	bench mark	CSES	corrugated steel end section	EDM	electronic distance meter				
Bkwy	bikeway	CSFES	corrugated steel flared end section	Elev or El	elevation				
Bit	bituminous	CSP	corrugated steel pipe	Ellipt	elliptical				
Blk	block	CSTES	corrugated steel traversable end section	Emb	embankment				
BH	bore hole	Co	County	Emuls	emulsion/emulsified				
Bot	bottom	Crse	course	ES	end section				
BlvdBndry	Boulevard boundary	$\begin{aligned} & \mathrm{Ct} \\ & \text { Xarm } \end{aligned}$	Courtcross arm	Engr	engineer		Depart		NRKJSTA
					environmental sensor station			${ }^{0720014}$	
Brkwy	breakaway	Xbuck	cross buck	Eq	equal		REvSSons		
Br		Xsec	cross sections	Evgr	evergreen		DATE	Change	Ryoto
Bldg	bridge building	Xing	crossing	Exc	excavation				
Bus.	business	Xrd	crossroadcrown	Exst	existing				$\binom{$ PROFESSSIONAL }{ PE-4683 }
BV	butterfly valve	Cr		Exp	expansion				-
Byp	bypass			Expy	Expressway external of curve extruded				Ergineer ${ }^{\text {a }}$
									PTHDAKO
				Extru					$\frac{A r}{122}$

Galv	galvanized	Ln	lane
Gar	garage	Lg	large
Gs L	gas line	Lat	latitude
G Reg	gas line regulator	Lt	left
GMV	gas main valve	Lens	lenses
G Mtr	gas meter	LvI	level
GSV	gas service valve	Lving	leveling
GVP	gas vent pipe	Lht	light
GV	gate valve	LP	light pole
Ga	gauge	Ltg	lighting
Gov	government	Liq	liquid
Grd	graded/grade	LL	liquid limit
Grnd	ground	Loc	location
GWM	ground water monitor	Long.	longitude
Gdrl	guardrail	Lp	loop
Gtr	gutter	$\begin{aligned} & \text { LD } \\ & \text { Lum } \end{aligned}$	loop detector luminaire
HPlg	H piling		
Hdwl	headwall	Mb	mailbox
Ht	height	ML	main line
Hel	helical	MH	manhole
HDPE	high density polyethylene	Mkd	marked
HM	high mast	Mkr	marker
HP	high pressure	Mkg	marking
HPS	high pressure sodium	MA	mast arm
HTCG	high tension cable guardrail	Matl	material
Hwy	highway	Max	maximum
Hor	horizontal	MC	meander corner
HBP	hot bituminous pavement	Meas	measure
HMA	hot mix asphalt	Mdn	median
Hyd	hydrant	MD	median drain
Ph	hydrogen ion content	MC	medium curing
		MGS	Midwest Guardrail System
		MM	mile marker
Id	identification	MP	mile post
\|ncl	inclinometer tube	Min	minimum
IMH	inlet manhole	Misc	miscellaneous
ID	inside diameter	Mon	monument
Inst	instrument	Mnd	mound
Intchg	interchange	Mtbl	mountable
Intmdt	intermediate	Mtd	mounted
Intscn	intersection	Mtg	mounting
Inv	invert	Mk	muck
IP	iron pipe		
Jt	joint		
Jct	junction	Neop	neoprene
		Ntwk	network
		N	North
		NE	North East
		NW	North West
		NB	Northbound
		No. or \#	number

Obsc	obscure(d)
Ocpd	occupied
Ocpy	occupy
O / s	offset
OC	on center
C	one dimensional consolidation
OC	organic content
Orig	original
O To O	out to out
OD	outside diameter
OH	overhead
PMT	pad mounted transformer
Pg	pages
Pntd	painted
Pr	pair
Pr	panel
Pk	park
PSD	passing sight distance
Pvmt	pavement
Ped	pedestal
Ped	pedestrian
PPP	pedestrian pushbutton post
Pen.	penetration
Perf	perforated
Per.	perimeter
Perm	permanent
PL	pipeline
PI	place
P\&P	plan \& profile
PL	plastic limit
Pl or P	plate
Pt	point
PE	polyethylene
PVC	polyvinyl chloride
PCC	Portland Cement concrete
PP	power pole
Preempt	preemption
Prefab	prefabricated
Prfmd or P	ref preformed
Prep	preperation
Press.	pressure
PRV	pressure relief valve
Prestr	prestressed
Pvt	private
PD	private drive
Prod.	production/produce
Prog	programmed
Prop.	property
Prop Ln	property line
Ppsd	proposed
PB	pull box

Qty	quantity
Qtr	quarter
Rad or R	radius
RR	railroad
Rlwy	railway
Rsd	raised
RC	rapid curing
Rec	record
Rcy	recycle
RAP	recycled asphalt pavement
RPCC	recycled portland cement concrete
Ref	reference
R Mkr	reference marker
RM	reference monument
RP	reference point
Refl	reflectorized
RCB	reinforced concrete box
RCES	reinforced concrete end section
RCFES	reinforced concrete flared end section
RCP	reinforced concrete pipe
RCPS	reinforced concrete pipe sewer
RCTES	reinforced concrete traversable end section
Reinf	reinforcement
Res	reservation
Res	residence
Ret	retaining
Rev	reverse
Rt	right
R/W	right of way
Riv	river
Rd	road
Rdbd	road bed
Rdwy	roadway
RWIS	roadway weather information system
Rk	rock
Rt	route

NORTH DAKOTADEPARTMENT OF TRANSPORTATION		
	07-01-14	
Date	Chance	
		$\left(\begin{array}{c} \begin{array}{c} \text { PROFESSIONAL } \\ \text { PE-4683 } \end{array} \end{array}\right)$

Salv	salvage(d)
San	sanitary sewer line
Sec	section
SL	section line
Sep	separation
Seq	sequence
Serv	service
Sht	sseet
Shtng	sheeting
Shldr	shoulder
Sw or Sdwk	sidewalk
SD	sight distance
SN	sign number
Sig	signal
Sgl	single
SRCP	slotted reinforced concrete pipe
SC	slow curing
SS	slow setting
Sm	small
S	South
SE	South East
SW	South West
SB	Southbound
Sp	spaces
Spcl	special
SA	special assembly
SP	special provisions
G	specific gravity
Spk	spike
SB	split tarrel sample
SH	sprinkler head
SV	sprinkler valve
Sq	square
Stk	stake
Std	standard
N	standard penetration test
Std Specs	standard specifications
StmL	steam line
SEC	steel encased concrete
SMA	stone matrix asphalt
SSD	stopping sight distance
SD	storm drain
St	street
SPP	structural plate pipe
SPPA	structural plate pipe arch
Str	structure
Subd	subdivision
Sub	subgrade
Sub Prep	subgrade preperation
Ss	subsoil
SS	supppenent specification
Supp	supplemental
Surf	surfacing
Surv	survey
Sym	symmetrical

Tel	telephone
Tel B	Telephone Booth
Tel P	telephone pole
Tv	television
Temp	temperature
Temp	temporary
TBM	temporary bench mark
T	thinwall tube sample
Ts	topsoil
Traf	traffic
TSCB	traffic signal control box
Tr	trail
Transf	transformer
Trans	transition
TT	transmission tower
TES	traversable end section
Trans	transverse
Trtd	treated
Trmt	treatment
Qc	triaxial compression
TERO	tribal employment rights ordinance
Tpl	triple
Typ	typical
Qu	unconfined compressive strength
Ugrnd	underground
Util	utility
VG	valley gutter
Vap	vapor
Vert	vertical
VCP	vitrified clay pipe
Vol	volume
VSFS	vehicle speed feedback sign
Wkwy	walkway
W	water content
WGV	water gate valve
WL	water line
WM	water main
WMV	water main valve
WMtr	water meter
WSV	water service valve
WW	water well
Wrng	wearing
WIM	weigh in motion
W	west
WB	westbound
Wrng	wiring
WI	with
W/o	without
WC	witness corner

MEASUREMENTS			
ac	acres	T	tesla
A	ampere	T/mi	tons per mile
Bd Ft	board feet	v	volt
Cd	candela	w	watt
cm	centimeter	Wb	weber
C	coulomb		
CF	cubic feet		
m3	cubic meter		
$\mathrm{m} 3 / \mathrm{s}$	cubic meters per second		
CY	cubic yard		
$\mathrm{CY} / \mathrm{mi}$	cubic yards per mile		
D or Deg	degree		
F	Fahrenheit		
F	farad		
ft	feet/foot		
Gal	gallon		
G	giga		
Ha	hectare		
H	henry		
Hz	hertz		
hr	hour(s)		
in	inch		
J	joule		
K	kelvin		
kN	kilo newton		
kPa	kilo pascal		
kg	kilogram		
kg/m3	kilogram per cubic meter		
km	kilometer		
K	Kip(s)		
LF	linear foot		
L	litre		
Lm	lumen		
L sum	lump sum		
Lx	lux		
M Hr	man hour		
M	mega		
m	meter		
m / s	meters per second		
mi	mile		
mL	milliliter		
mm	millimeter		
$\mathrm{mm} / \mathrm{hr}$	millimeters per hour		
n	nano		
N	newton		
Pa	pascal		
1 b	pounds		
sec	seconds		
S	siemens		
SF	square feet		
km2	square kilometer		
m2	square meter		
SY	square yard		
Sta Yd	station yards		
SI	Systems International		

SURV	DESCRIPTIONS	SOll T	PES
Az	azimuth	Cl	clay
Bs	backsight	ClF	clay fill
${ }_{8 P}^{\text {Brg }}$	bearing	Cl Hvy	clay heavy
${ }_{\text {BS }}{ }^{\text {BP }}$ Cap	both sides	Cl Lm	clay loam
BC	brass cap	Cos	coal slack
CS	curve to spiral	C Gr	coarse gravel
Eq	equation external of curve	CS	coarse sand
Fs	far side	FS	fine sand
FB	field book	Gr	gravel
${ }_{\text {Geod }}$	foresight	Lig Co	lignite coal
Gls	Geoographical Information System	Lig SI	lignite slack
GPS	Global Positioning System	Lm	loam
HI	height of instrument	Rk	rock
IM	iron monument	Sd	sand
IPn	iron pin ${ }_{\text {Land S }}$ Surveyor (licensed)	Sdy Cl	sandy clay
LSIT	Land Surveyor In Training	Sdy CI Lm	sandy clay loam
L	length of curve	Sdy FI	sandy fill
${ }_{\text {LC }}^{\text {LB }}$	long chord level book	Sdy Lm	sandy loam
Mer	meridian	Sc	scoria
M	mid ordinate of curve	Sh	shale
NGS	National Geodetic Survey	Si Cl	silt clay
NS	near side	Si CILm	silty clay loam
Obss	observation	Si Lm	silty loam

CENEXPL
CENT PL WATER DIST CENT PWR ELEC CENTURYLINK
COE
CONS TEL
CONT RE
CPR
DAK CARR
DAK CENT TEL
DAK CENT
DAK RWD DGC
DICKEY R NET
DICKEY RWU
DICKEY TEL
DNRR
DOME PL
DVELEC
DVMW
DVMW
ENBRDG
ENBRDG
ENVENTIS
ENVENTIS
EQUINOR
EQUINOR
FALK MNG
FHWA
G FKS-TRL WD GETTY TRD \& TRAN GLDN W ELEC GRGS CO TEL
GTR RAMSEY WD

702 Communications
Accent Communication Agassiz Water Users Incorporated Assiociated General Contractors of America Alliance Pipeline
All Seasons Water Users Association Amoco Pipeline Company Amerada Hess Con
Bear Paw Energy Incorporated Baker Electric
Basin Electric Cooperative Incorporated Bek Communications Cooperative Belle Fourche Pipeline Company Bureau of Land Management Burlington Northern Santa Fe Railway Boeing
Barnes
Barnes Rural Water District Burleigh Water Users
Cable One
Cable Services
Capital Electric Cooperative Incorporat Cass County Electric Cooperative Cass Rural Water Users Incorporated Cablecom Of Fargo
Cablecom Of Far
Cenex Pipeline
Central Pipe Line Water District Central Power Electric Cooperative CenturyLink
Corps of Engineers
Consolidated Telephone
Continental Resource Inc
Canadian Pacific Railway Department Of Energy
Dakota Carrier Network Dakota Centrier Network Telephone Dakota Rural Water District Dakota Gasification Company Dickey Rural Networks Dickey Rural Water Users Association Dickey Telephone Dakota Northern Railroad Dome Pipeline Company Dakota Valley Electric Cooperative Dakota, Missouri Valley \& Wester Enventis Telephone Equinor Pipeline
Falkirk Mining Company Federal Highway Administration Grand Forks-traill Water District Getty Trading \& Transportation Golden West Electric Cooperative Griggs County Telephone Griggs County Telephone
Greater Ramsey Water District

GT PLNS NAT GAS
HALS TEL
DEA1
NT-COMM TEL
KANEB PL
KEMELEC
KOCH GATH SYS
LKHD PL
_NGDN RWU
LWR YELL R ELEC
MCKNZ CON
MCKNZ ELEC
MCKNZ WRD
MCLEOD
MCLN-SHRDN R WAT MDU
MIDSTATE TEL
minot CAble
MINOT TEL
MISS VALL COMM
MISS W W S
MNKOTA PWR
MOR-GRAN-SOU ELEC
MRE LBTY TEL
MRE LBTY TEL
MUNICIPAL
MUNICIPAL
N CENT ELEC
N VALL W DIST
ND PKS \& REC
ND TEL
NDDOT
NDSU SOIL SCIDEPT
NEMONT TEL
NODAK RELEC
NOON FRMS TEL
NPR
NTH PRAIR RW
NTHN BRDR PL
NTHN PLNS ELEC
NTHWSTRN REF
Nw COMm
NWRWD
ONEOK
OSHA
OTTR TL PWR
PAAP
PLEM
POLAR COM
PVT ELEC
QWEST
RWEST

Great Plains Natural Gas Company
Halstad Telephone Company
dea1
nter-Community Telephone Company aneb Pipeline Company
Kem Electric Cooperative Incorporated Kakehead Pipeline Company
Langdon Rural Water Users Incorporated
Lower Yellowstone Rural Electric
McKenzie Consolidated Telcom
McKenzie Electric Cooperative
Mckenzie County Water Resource Distric MCLeod USA
cLean Electric Cooperative Montana-dakota Utilities
MidContinent Communicatio
Midstate Telephone Company
Minot Cable Television
Minot Telephone Company
Missouri Valley Communications
Missouri West Water System Minnkota Power
Mor-gran-sou Electric Cooperative ountrail-williams Electric Cooperative City Water And Sewer City Water
North Central Electric Cooperative North Valley Water District
North Dakota Parks And Recreation
North Dakota Telephone Company North Dakota Department of Transportation NDSU Soil Science Department
emont Telephone
 Noonan Farmers Telephone Company Northern Plains Railroad
Northern States Power
Northern Prairie Rural Water Association Northern Border Pipeline
Northern Plains Electric Cooperative Incorporated Northwestern Refinery Company
Northwest Communication Cooperation Northwest Rural Water District neok gas
ccupational Safety and Health Administration
Itter Tail Power Company
Pains All American Pipeline
Polar Communications
Private Electric
Qwest Communications
R \& T Water Supply Association

RED RIV COMM	Red River Rural Communications
RESVTN TEL	Reservation Telephone
ROBRTS TEL	Roberts Company Telephone
R-RIDER ELEC	Roughrider Elecetric Cooperative
RRVW	Red River Valley \& Western Railroad
S CENT REG WD	South Central Regional Water District
SE WU	South East Water Users Incorporated
SCOTT CABLE	Scott Cable Television Dickinson
SHERDN ELEC	Sheridan Electric Cooperative
SHEYN VLY ELEC	Sheyenne Valley Electric Cooperative
SKYTECH	Skyland Technologies Incorporated
SLOPE ELEC	Slope Electric Cooperative Incorporated
SOURIS RIV TELCOM	Souris River Telecommunications
ST WAT COMM	State Water Commission
STATE LN WATER	State Line Water Cooperative
STER ENG	Sterling Energy
STUT RWU	Stutsman Rural Water Users
SW PLPRJ	Southwest Pipeline Project
TMC	Turtle Mountain Communications
TCI	TCl of North Dakota
TESORO HGH PLNS PL	Tesoro High Plains Pipeline
TRICNTY WU	Tri-COunty Water Users Incorporated
TRL CO RWU	Traill County Rural Water Users
UNTD TEL	United Telephone
UPPR SOUR WUA	Upper Souris Water Users Association
US SPRINT	U.S.Sprint
USAF MSL CABLE	U.S.A.F. Missile Cable
USFWS	US Fish and Wildlife Service
USW COMM	U.S. West Communications
VRNDRY ELEC	Verendrye Electric Cooperative
W RIV TEL	West River Telephone Incorporated
WAPA	Western Area Power Administration
WAWSA	Western Area Water Supply Authority
WEB	W.E. B. Water Development Association
WILLIRWA	Williams Rural Water Association
WILSTN BAS PL	Williston Basin Interstate Pipeline Company
WLSH RWD	Walsh Water Rural Water District
WOLVRTN TEL	Wolverton Telephone
XLENER	Xcel Energy
YSVR	Yellowstone Valley Railroad

Existing Topography

Right Of Way

	Easement
	Existing Easement
--	Right of Way
	Existing Right of Way
	Existing Right of Way Rairroad
	Existing Right of Way Not State Owned
	Existing Government Lot Line
	Existing Adjacent Block Lines
	Existing Adjacent Lot Lines
	Existing Adjacent Property Line
	Existing Adjacent Subdivision Lines
	Sight Distance Triangle Line
	Dimension Leader
Boundary Control	
	Existing City Corporate Limits or Reservation Boundary
	Existing State or International Line
	Existing Township
	Existing County
	Existing Section Line
	Existing Quarter Section Line
	Existing Sixteenth Section Line
-- -- -- -- --	Existing Centerine
- - - -	Tangent Line

Cross Sections and Typicals
------------- Existing Ground

---	Existing Topsoil (Cross Section View)
void - void - void - v	Existing Ground Void (Not Surveyed)
	Existing Concrete
	Existing Aggregate (Cross Section View)

__ Existing Curb and Gutter (Cross Section View)
- Ex Existing Asphatt (Cross Section View)
__-_-_ Existing Reinforcement Rebar Geotechnical
o 0 - Geotextile Fabric Type D
_- $600-$ Co00 - Geogrid

___ R-_ Geotexile Fabric Type R 1

—— s —— s — Geotextile Fabric Type s
Subgrade Reinforcement
_-. - Failure Line

Countours

$\ldots \ldots$ Depression Contours
$---\ldots-1 . \ldots----\quad$ Supplemental Contour

Profile
--_-_-_ Subgrade, Subcut or Ditch Grade
_______ _ Topsoil Profile

Striping

- Centerine Pavement Marking
$=$ Barrier with Centerline Pavement Marking
$\bar{\Longrightarrow}$ Barrier Pavement Marking
_ - - - - - - Stripe 4 IN Dotted Extension White
- - - - - - Stripe 8 IN Dotted Extension White
- - - - - Stripe 8 IN Lane Drop

Pavement Joints Doweled Joint
Tie Bar 30 Inch 4 Foot Center to Center

Bridge Details
--------- - - Small Hidden Object
_ — - — - Large Hidden Object
___-_-_ - - Phantom Object
_-............... Existing Conditions Object
————————Centerine Mair
-------- Centerine Secondary
$-\quad-\quad-\quad$ Excavation Limits
—---------- Proposed Ground
งนumumumuma Sheet Piling

Erosion Control

Limits of Const Transition Line
Bale Check
Rock Check
__ s c_ sloating Silt Curtai

$-\quad-\quad-\quad$ Excavation Limits
_.............. Fiber Rolls

Environmental

- Werru-u_ Wetland Mitigation
\qquad

Tree Row

- Flexible Delineator
\square Flexible Delineator Type A (Exst, Ppss)
$\square \quad$ Flexible Delineator Type B (Exst, Ppsd)
Flexible Delineator Type C (Exst, Ppsd)
Flexible Delineator Type D (Exst, Ppsd)
Flexible Delineator Type E (Exst, Ppsd)
Delineator Type A (Exst, Ppsd, Diamond Grate Rese

Delineator Type B (Exst, Ppsd, Diamond Grade-Reset)

Delineator Type C (Exst, Ppsd, Diamond Grade)
Delineator Type D (Exst, Ppsd, Diamond Grade)
Delineator Type E (Exst, Ppsd, Diamond Grade)
Barricade (Type I, Type II, Type III
Arrow Panel (Caution Mode, Double Direction, Left Directional
Attenuation Device
Truck Mounted Attenuator

- Delineator Drums
$\square \quad$ Flagger
- Tubular Marker
$\triangle \quad$ Traffic Cone
Back to Back Vertical Panel Sign

Highway Sign (Exst, Ppsd)
Mile Post Type A (Exst-Ppsd-Reset)
wie Post Type B (Exst, Ppsd)
Mile Post Type C (Exst, Ppsd)
Object Marker Type l (Exst, Ppsd)
Object Marker Type II (Exst, Ppsd)
Object Marker Type III (Exst, Ppsd)
Existing Reference Marker
Road Closure Gate 18 Ft (Exst, Ppst)

Road Closure Gate 28 ft (Exst, Ppsd)
Road Closure Gate 40 Ft (Exst, Ppsd)
Existing Rairroad Battery Box
Existing RR Profile Spot
Existing Rairroad Crossbuck
Existing Rairroad Frog

Existing Mailoox (Private, Federa)

Existing Luminaire

- Le- Luminaire LED

Existing Light Standard Luminaire
-() Relocate Light Standard

- Light Standard Light LED Luminaire
(1) Light Standard 35 Watt High Pressure Sodium Vapor Luminaire

L Light Standard 50 Watt High Pressure Sodium Vapor Luminaire
Light Standard 70 Watt High Pressure Sodium Vapor Luminaire Light Standard 100 Watt High Pressure Sodium Vapor Luminaire
(4) Light Standard 150 Watt High Pressure Sodium Vapor Luminaire

Light Standard 200 Watt High Pressure Sodium Vapor Luminaire
Light Standard 250 Watt High Pressure Sodium Vapor Luminaire

- Light Standard 310 Watt High Pressure Sodium Vapor Luminaire Light Standard 400 Watt High Pressure Sodium Vapor Luminaire Light Standard 700 Watt High Pressure Sodium Vapor Luminaire
- Light Standard 1000 Watt High Pressure Sodium Vapor Luminaire
- Emergency Vehicle Detector
- Video Detection Camera

High Mast Light Standard 3 Luminaire (Exst, Ppsd)
High Mast Light Standard 4 Luminaire (Exst, Ppsd)
High Mast Light Standard 5 Luminaire (Exst, Ppsd)
High Mast Light Standard 6 Luminaire (Exst, Ppsd)
High Mast Light Standard 7 Luminaire (Exst, Ppsd)
High Mast Light Standard 8 Luminaire (Exst, Ppsd)
High Mast Light Standard 9 Luminaire (Exst, Ppsd)
High Mast Light Standard 10 Luminaire (Exst, Ppsd)
Overhead Sign Structure Load Center (Exst, Ppsd)
Traffic Signal Controller (Exst, Ppsd)
Pad Mounted Traffic Signal Controller (Exst, Ppsd)
Flashing Beacon (Exst, Ppsd)
Concrete Foundation (Exst, Ppsd)
Pipe Mounted Flasher (Exst, Ppsd)
Pad Mounted Feed Point (Exst, Ppsd)
Pipe Mounted Feed Point with Pad (Exst, Ppsd)
Pole Mounted Feed Point (Exst, Ppsd)
Junction Box (Exst, Ppsd)
Existing Pedestrian Head with Number
Existing Signal Head
\rightarrow Pole Mounted Head

Existing Lighting Standard Pole

Existing Traffic Signal Standard
Pull Box (Exst-Ppsd-Undefined)

Intelligent Transportation Pull Box (Exst, Ppsd)
Transformer (Exst, Ppsd)
Power Pole (Exst-Ppsd-with Transformer)
Wood Pole (Exst, Ppss)
Pedestrian Push Button Post (Exst, Ppsd)
Existing Pole

Existing Telephone Pole
Existing Post
Connection Conductor (Ground, Neutral, Phase 1, Phase 2)

200 lb
400 lb
700 lb

Outer Containers
Cones

Typical Assembly

Typical Module Construction Detail
${ }^{4 " \text { black }}$

Left Side
Traffic
$\leq{ }^{3 " \text { orange }(A)}$

$\sim_{\substack{\text { finito } \\ \text { fshouded }}}^{4 .}$

A) Use 3 " orarge sheeting for temporary installations, and 3 " yellow
sheeting for peemanent installations.

Fill Chart					
	Module Weights (LBS)				
	200	400	700	1400	
2100					
Distance for top edge	$81 /{ }^{1 / 2}$	$5^{\prime \prime}$	$4^{\prime \prime}$	$3^{\prime \prime}$	

Note: ange atenuation devices 10 degres towards trafic when placed at piers offset from roadway.
\longrightarrow Trafic side \longrightarrow

Type B Layou

Type B Attenuation Device											
Module Number	Dash Number										
	75	70	65	60	55	50	45	40	35	30	25
	Module Weight (LBS)										
B1	2100										
B2	2100										
в3	2100	2100	2100	2100	2100	2100	2100	2100	2100		
B4	2100	2100	2100	2100	2100	2100	2100	2100	2100		
B5	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400
B6	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400
B7	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400
B8	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400
B9	700	700	700	700	700	700	700	700	700	700	700
810	700	700	700	700	700	700	700	700	700	700	700
811	700	700	700	700	700	700	700	700	700	700	700
B12	700	700	700	700	700	700	700	700	700	700	700
B13	700	700	700	700	700	700	700	700	700	700	700
B14	400	400	400	400	400	400	400	400	400	400	400
B15	400	400	400	400	400	400	400	400	400	400	400
B16	200	200	200	200	200	200	200	200	200	200	200
Length (L)	34.2'	30.7	$30.7{ }^{\prime}$	$30.7{ }^{\prime}$	$30.7{ }^{7}$	$30.7{ }^{\prime}$	$30.7{ }^{7}$	$30.7{ }^{\prime}$	$30.7{ }^{7}$	27.2'	27.2'
Module Weights (LBS)					Repla	ement	dule				
2100	1	1	1	1	1	1	1	1	1		
1400	1	1	1	1	1	1	1	1	1	1	1
700	2	2	2	2	2	2	2	2	2	2	2
400	1	1	1	1	1	1	1	1	1	1	1
200	2	2	2	1	1	1	1	1	1	1	1

Notes:

.

Devices, Inc. of San Clemente, CA, or approved equal meet these requirements.
5. The Typical Module Constuction Detail and Type B Layout are based on the Energite Crash Cushion manufactured by Energy Absorption.

NORTH DAKOTADEPARTMENT OF TRANSPORTATION		This document was originally issued and sealed by
$\frac{9-25-12}{\text { REVISIONS }}$		
DATE	CHANGE	Kirk J Hoff,
$\begin{aligned} & 7-18-14 \\ & \hline 9.27-17 \\ & 1020210 \end{aligned}$	Revised sheeting in reflective sheet deta Update to active voice	Registration Number PE-4683
-19	New	on 10/03/19 and the origina document is stored at the North Dakota Department of Transportation

U-Channel Post

R11-4a-60
Legend: black (non-refl)

This document was originally issued and sealed by Kisued and sealed
Kirk J Hoff, Kirk J Hoff,
Registration Number egistration Num
PE-4683,
on 10/03/19 and the original document is stored at the ortation

PORTABLE RUMBLE STRIPS ARRAY DETAIL

PORTABLE RUMBLE STRIPS ARRAY TYPES OF MOVEMENT AND MAXIMUM ALLOWANCES

Noles.
1. De
De

3. Sign $R 2$-1ap-24is not required when piot car operation is used
4. Do not se unvie stris on anon paved surface or in a pre-

[^0]:

[^1]:

